609 research outputs found

    Partially composite 2-Higgs-doublet model

    Get PDF
    In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive four-fermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale Λ\Lambda. The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.Comment: To appear in the proceeding of LCWS06, Bangalore, Indi

    Anomaly Mediated Supersymmetry Breaking in Four Dimensions, Naturally

    Get PDF
    We present a simple four-dimensional model in which anomaly mediated supersymmetry breaking naturally dominates. The central ingredient is that the hidden sector is near a strongly-coupled infrared fixed-point for several decades of energy below the Planck scale. Strong renormalization effects then sequester the hidden sector from the visible sector. Supersymmetry is broken dynamically and requires no small input parameters. The model provides a natural and economical explanation of the hierarchy between the supersymmetry-breaking scale and the Planck scale, while allowing anomaly mediation to address the phenomenological challenges posed by weak scale supersymmetry. In particular, flavor-changing neutral currents are naturally near their experimental limits.Comment: 14 pages, Late

    Partially Composite Higgs in Supersymmetry

    Full text link
    We propose a framework for natural breaking of electroweak symmetry in supersymmetric models, where elementary Higgs fields are semi-perturbatively coupled to a strong superconformal sector. The Higgs VEVs break conformal symmetry in the strong sector at the TeV scale, and the strong sector in turn gives important contributions to the Higgs potential, giving rise to a kind of Higgs bootstrap. A Higgs with mass 125\GeV can be accommodated without any fine tuning. A Higgsino mass of order the Higgs mass is also dynamically generated in these models. The masses in the strong sector generically violate custodial symmetry, and a good precision electroweak fit requires tuning of order 10\sim 10%. The strong sector has an approximately supersymmetric spectrum of hadrons at the TeV scale that can be observed by looking for a peak in the WZWZ invariant mass distribution, as well as final states containing multiple WW, ZZ, and Higgs bosons. The models also generically predict large corrections (either enhancement or suppression) to the h \to \ga\ga width.Comment: 31 page

    Improved Single Sector Supersymmetry Breaking

    Get PDF
    Building on recent work by N. Arkani-Hamed and the present authors, we construct realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single strongly-coupled sector. The most important improvement compared to earlier models is that the second-generation composite states correspond to dimension-2 "meson" operators in the ultraviolet. This leads to a higher scale for flavor physics, and gives a completely natural suppression of flavor-changing neutral currents. We also construct models in which the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. These models provide an interesting and viable alternative to gravity- and gauge-mediated models. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation squark and slepton masses. We also analyze large classes of models that give rise to both compositeness and supersymmetry breaking, based on gauge theories with confining, fixed-point, or free-magnetic dynamics.Comment: 34 pages, LaTeX2

    A Minimal Superstring Standard Model I: Flat Directions

    Get PDF
    Three family SU(3)_C x SU(2)_L x U(1)_Y string models in several constructions generically possess two features: (i) an extra local anomalous U(1)_A and (ii) numerous (often fractionally charged) exotic particles beyond those in the minimal supersymmetric model (MSSM). Recently, we demonstrated that the observable sector effective field theory of such a free fermionic string model can reduce to that of the MSSM, with the standard observable gauge group being just SU(3)_C x SU(2)_L x U(1)_Y and the SU(3)_C x SU(2)_L x U(1)_Y-charged spectrum of the observable sector consisting solely of the MSSM spectrum. An example of a model with this property was shown. We continue our investigation of this model by presenting a large set of different flat directions of the same model that all produce the MSSM spectrum. Our results suggest that even after imposing the conditions for the decoupling of exotic states, there may remain sufficient freedom to satisfy the remaining phenomenological constraints imposed by the observed data.Comment: 64 pages. Latex. Revisions to match version in Int. J. Mod. Physics

    "Gaugomaly" Mediated SUSY Breaking and Conformal Sequestering

    Full text link
    Anomaly-mediated supersymmetry breaking in the context of 4D conformally sequestered models is combined with Poppitz-Trivedi D-type gauge-mediation. The implementation of the two mediation mechanisms naturally leads to visible soft masses at the same scale so that they can cooperatively solve the mu and flavor problems of weak scale supersymmetry, as well as the tachyonic slepton problem of pure anomaly-mediation. The tools are developed in a modular fashion for more readily fitting into the general program of optimizing supersymmetric dynamics in hunting for the most attractive weak scale phenomenologies combined with Planck-scale plausibility.Comment: 14 pages, Late

    Duality between simple-group gauge theories and some applications

    Full text link
    In this paper we investigate N=1 supersymmetric gauge theories with a product gauge group. By using smoothly confining dynamics, we can find new dualities which include higher-rank tensor fields, and in which the dual gauge group is simple, not a product. Some of them are dualities between chiral and non-chiral gauge theories. We also discuss some applications to dynamical supersymmetry breaking phenomena and new confining theories with a tree-level superpotential.Comment: 33 pages, LaTeX, references added, version to appear in PR

    Composite Quarks and Leptons from Dynamical Supersymmetry Breaking without Messengers

    Get PDF
    We present new theories of dynamical SUSY breaking in which the strong interactions that break SUSY also give rise to composite quarks and leptons with naturally small Yukawa couplings. In these models, SUSY breaking is communicated directly to the composite fields without ``messenger'' interactions. The compositeness scale can be anywhere between 10 TeV and the Planck scale. These models can naturally solve the supersymmetric flavor problem, and generically predict sfermion mass unification independent from gauge unification.Comment: 27 pages, LaTeX; Clarified flavor symmetry of strong interactions; corrected overestimate of FCNC's; conclusions strengthene

    Quasilocalized gravity without asymptotic flatness

    Get PDF
    We present a toy model of a generic five-dimensional warped geometry in which the 4D graviton is not fully localized on the brane. Studying the tensor sector of metric perturbation around this background, we find that its contribution to the effective gravitational potential is of 4D type (1/r) at the intermediate scales and that at the large scales it becomes 1/r^{1+alpha}, 0<alpha=< 1 being a function of the parameters of the model (alpha=1 corresponds to the asymptotically flat geometry). Large-distance behavior of the potential is therefore not necessarily five-dimensional. Our analysis applies also to the case of quasilocalized massless particles other than graviton.Comment: 9 pages, 1 figure; to be published in Phys. Rev.
    corecore